10b76600

Что такое эдс (электродвижущая сила) в физике: суть и принцип для начинающих чайников

Что такое эдс – формула и применение

В электротехнике источники питания электрических цепей характеризуются электродвижущей силой (ЭДС).

Содержание

Что такое ЭДС

Во внешней цепи электрического контура электрические заряды двигаются от плюса источника к минусу и создают электрический ток.

Для поддержания его непрерывности в цепи источник должен обладать силой, которая смогла бы перемещать заряды от более низкого к более высокому потенциалу.

Такой силой неэлектрического происхождения и является ЭДС источника. Например, ЭДС гальванического элемента.

В соответствии с этим, ЭДС (E) можно вычислить как:

E=A/q, где:

  • A –работа в джоулях;
  • q — заряд в кулонах.

Величина ЭДС в системе СИ измеряется в вольтах (В).

Формулы и расчеты

ЭДС представляет собой работу, которую совершают сторонние силы для перемещения единичного заряда по электрической цепи

Схема замкнутой электрической цепи включает внешнюю часть, характеризуемую сопротивлением R, и внутреннюю часть с сопротивлением источника Rвн. Непрерывный ток (Iн) в цепи будет течь в результате действия ЭДС, которая преодолевает как внешнее, так и внутреннее сопротивление цепи.

Ток в цепи определяется по формуле (закон Ома):

Iн= E/(R+Rвн).

При этом напряжение на клеммах источника (U12) будет отличаться от ЭДС на величину падения напряжения на внутреннем сопротивлении источника.

U12 = E — Iн*Rвн.

Если цепь разомкнута и ток в ней равен 0, то ЭДС источника будет равна напряжению U12.

Разработчики источников питания стараются уменьшать внутренние сопротивление Rвн, так как это может позволить получить от источника больший ток.

Где применяется

В технике применяются различные виды ЭДС:

  • Химическая. Используется в батарейках и аккумуляторах.
  • Термоэлектрическая. Возникает при нагревании контактов разнородных металлов. Используется в холодильниках, термопарах.
  • Индукционная. Образуется при пересечении проводником магнитного поля. Эффект используется в электродвигателях, генераторах, трансформаторах.
  • Фотоэлектрическая. Применяется для создания фотоэлементов.
  • Пьезоэлектрическая. При растяжении или сжатии материала. Используется для изготовления датчиков, кварцевых генераторов.

Таким образом, ЭДС необходима для поддержания постоянного тока и находит применений в различных видах техники.

Источник: https://elektro.guru/osnovy-elektrotehniki/chto-takoe-eds.html

Что такое ЭДС и в она чем измеряется?

Когда родилось понятие «электрон», люди сразу связали его с определенной работой. Электрон – это по-гречески «янтарь». То, что грекам для того, чтобы найти этот бесполезный, в общем-то, магический камушек, надо было довольно далеко проехать на север — такие усилия тут, в общем-то, не в счет.

А вот стоило проделать некоторую работу — руками по натиранию камушка о шерстяную сухую тряпочку — и он приобретал новые свойства. Это знали все.

Натереть просто так, ради сугубо бескорыстного интереса, чтобы понаблюдать, как теперь к «электрону» начинает притягиваться мелкий мусор: пылинки, шерстинки, ниточки, перышки.

Обратите внимание

В дальнейшем, когда появился целый класс явлений, объединенных потом в понятие «электричество», работа, которую надо обязательно затратить, не давала людям покоя. Раз нужно затратить, чтобы получился фокус с пылинками — значит, хорошо бы эту работу как-то сохранить, накопить, а потом и получить обратно.

Иллюстрация 1

Таким образом из все более усложнявшихся фокусов с разными материалами и философских рассуждений и научились эту магическую силу собирать в баночку. А потом сделать и так, чтобы она из баночки постепенно высвобождалась, вызывая действия, которые стало уже можно ощутить, а очень скоро и померить.

И померили настолько остроумно, имея всего-то пару шелковых шариков или палочек и пружинные крутильные весы, что и теперь мы вполне серьезно пользуемся все теми же формулами для расчетов электрических цепей, которые уже пронизали теперь всю планету, бесконечно сложных, сравнительно с теми первыми приспособлениями.

Иллюстрация 2

А название этого могучего джинна, сидящего в баночке, так до сих пор и содержит восторг давних открывателей: «Электродвижущая сила». Но только сила эта — совсем не электрическая.

А наоборот, посторонняя страшная сила, заставляющая электрические заряды двигаться «против воли», то есть преодолевая взаимное отталкивание, и собираться где-то с одной стороны. От этого получается разность потенциалов. Ее и можно использовать, пустив заряды другим путем.

Где их «не сторожит» эта страшная ЭДС. И заставить, тем самым, выполнить некоторую работу.

Принцип работы

ЭДС — это сила самой разной природы, хотя измеряется она в вольтах:

Схема простейшего прибора

  • Химической. Происходит от процессов химического замещения ионов одних металлов ионами других (более активных). В результате образуются лишние электроны, стремящиеся «спастись» на краю ближайшего проводника. Такой процесс бывает обратимым или необратимым. Обратимый — в аккумуляторах. Их можно зарядить, вернув заряженные ионы обратно в раствор, отчего он приобретет больше, например, кислотности (в кислотных аккумуляторах). Кислотность электролита и есть причина ЭДС аккумулятора, работает непрерывно, пока раствор не станет абсолютно нейтральным химически.

Аккумуляторная батарея в разрезеСхематическое изображение аккумуляторной батареи

  • Магнитодинамической. Возникает при воздействии на проводник, некоторым образом ориентированный в пространстве, изменяющегося магнитного поля. Или от магнита, движущегося относительно проводника, или от движения проводника относительно магнитного поля. Электроны в этом случае тоже стремятся двигаться в проводнике, что позволяет их улавливать и помещать на выходные контакты устройства, создавая разность потенциалов.

Работа фотоэлементаЭлектрогенератор

  • Электромагнитной. Переменное магнитное поле создается в магнитном материале переменным электрическим напряжением первичной обмотки. Во вторичной обмотке возникает движение электронов, а значит и напряжение, пропорциональное напряжению в первичной обмотке. Значком ЭДС трансформаторы могут обозначаться в схемах эквивалентного замещения.

Схема работы трансформатора

  • Фотоэлектрической. Свет, попадая на некоторые проводящие материалы, способен выбивать электроны, то есть делать их свободными. Создается избыток этих частиц, отчего лишние выталкиваются к одному из электродов (аноду). Возникает напряжение, которое и способно породить электрический ток. Такие приборы называются фотоэлементами. Первоначально были придуманы вакуумные фотоэлементы, в которых электроды были установлены в колбе с вакуумом. Электроны в этом случае выталкивались за пределы металлической пластинки (катод), а улавливались другим электродом (анод). Такие фотоэлементы нашли применение в датчиках света. С изобретением же более практичных полупроводниковых фотоэлементов стало возможным создавать из них мощные батареи, чтобы суммированием электродвижущей силы каждого из них вырабатывать существенное напряжение.

Схема работы солнечной батареи

  • Теплоэлектрической. Если два разных металла или полупроводника спаять в одной точке, а потом в эту точку доставить тепло, например, свечи, то на противоположных концах пары металлов (термопары) возникает разница в плотностях электронного газа. Эта разница может накапливаться, если соединить термопары последовательной цепочкой, подобно соединению гальванических элементов в батарее или отдельных фотоэлементов в солнечной батарее. ТермоЭДС используется в очень точных датчиках температуры. С этим явлением связано несколько эффектов (Пельтье, Томсона, Зеебека), которые успешно исследуются. Фактом является то, что теплота способна непосредственно превратиться в электродвижущую силу, то есть напряжение.

Схема работы тепловой батареи

  • Электростатической. Такие источники ЭДС были придуманы практически одновременно с гальваническими элементами или даже раньше (если считать натирание янтаря шелком нормальным производством ЭДС). Они еще называются электрофорными машинами, или, по имени изобретателя, генераторами Вимшурста. Хотя Вимшурст создал внятное техническое решение, позволяющее снятый потенциал накапливать в лейденской банке — первом конденсаторе (причем, хорошей емкости). Первой же электрофорной машиной можно считать огромный шар из серы, насаженный на ось, — аппарат магдебургского бургомистра Отто фон Герике в середине XVII века. Принцип работы — натирание легко электризующихся от трения материалов. Правда прогресс у фон Герике можно назвать, по поговорке, движимым ленью, когда нет охоты натирать янтарь или что-то другое вручную. Хотя, конечно, этому любознательному политику чего-чего, а фантазии и активности было не занимать. Вспомним хотя бы его же всем известный опыт с разрыванием двумя вереницами ослов (или мулов) шара без воздуха за цепи на два полушария.

Электрофорная машина

Электризация, как первоначально предполагали, происходит именно от «трения», то есть, натирая янтарь тряпкой, мы «срываем» с его поверхности электроны. Однако исследования показали, что здесь не так все просто. Оказывается, на поверхности диэлектриков всегда имеются неравномерности заряда, и к этим неравномерностям притягиваются ионы из воздуха. Образуется такая воздушно-ионная шуба, которую мы и повреждаем, натирая поверхность.

  • Термоэмиссионной. При нагревании металлов с их поверхности срываются электроны. В вакууме они достигают другого электрода и наводят там отрицательный потенциал. Очень перспективное сейчас направление. На рисунке приведена схема защиты гиперзвукового летательного аппарата от перегрева частей корпуса встречным потоком воздуха, причем термоэлектроны, испускаемые катодом (который при этом охлаждается — одновременное действие эффектов Пельтье и/или Томсона), достигают анода, наводя на нем заряд. Заряд, вернее, напряжение, которое равно полученной ЭДС, можно использовать в цепи потребления внутри аппарата.

Термоэмиссионный заряд

1 — катод, 2 — анод, 3, 4 — отводы катода и анода, 5 — потребитель

  • Пьезоэлектрической. Многие кристаллические диэлектрики, когда испытывают механическое давление на себя в каком-либо направлении, реагируют на него наведением разницы потенциалов между своими поверхностями. Эта разность зависит от приложенного давления, поэтому уже используется в датчиках давления. Пьезоэлектрические зажигалки для газовых плит не требуют никакого другого источника энергии — только нажатия пальцем на кнопочку. Известны попытки создания пьезоэлектрической системы зажигания в автомобилях на основе пьезокерамики, получающей давление от системы кулачков, связанных с главным валом двигателя. «Хорошие» пьезоэлектрики — у которых пропорциональность ЭДС от давления высоко точна — бывают очень тверды (например, кварц), при механическом давлении почти не деформируются.

Пьезоэлектрический элементСхема пьезоэлектрического элемента

  • Однако долгое воздействие давлением на них вызывает их разрушение. В природе мощные слои каменных пород также являются пьезоэлектриками, давления земных толщ наводят громадные заряды на их поверхностях, что порождает в глубинах земли титанические бури и грозы. Однако, не все так страшно.Уже были разработаны и эластичные пьезоэлектрики, и даже уже началось изготовление на их основе (и на основе нанотехнологий) изделий, идущих на продажу.

То, что единицей измерения ЭДС является единица электрического напряжения, понятно. Так как самые разнородные механизмы, создающие электродвижущую силу источника тока, все преобразуют свои виды энергии в движение и накопление электронов, а это в конечном счете и приводит к появлению такого напряжения.

Ток, возникающий от ЭДС

Электродвижущая сила источника тока на то и движущая сила, что электроны от нее начинают двигаться, если замкнуть электрическую цепь. Их к этому принуждает ЭДС, пользуясь своей неэлектрической «половиной» природы, которая не зависит, все-таки, от половины, связанной с электронами.

Так как считается, что ток в цепи течет от плюса к минусу (такое определение направления было сделано раньше, чем все узнали, что электрон — отрицательная частица), то внутри прибора с ЭДС ток делает движение завершающее — от минуса к плюсу. И всегда рисуют у знака ЭДС, куда направлена стрелочка – +.

Только в обоих случаях — и внутри ЭДС источника тока, и снаружи, то есть в потребляющей цепи, — мы имеем дело с электрическим током со всеми его обязательными свойствами. В проводниках ток наталкивается на их сопротивление.

И здесь, в первой половине цикла, имеем сопротивление нагрузки, во второй, внутренней, — сопротивление источника или внутреннее сопротивление.

Внутренний процесс работает не мгновенно (хотя очень быстро), а с определенной интенсивностью. Он совершает работу по доставке зарядов от минуса к плюсу, и это тоже встречает сопротивление…

Работа электрической батарейки

Сопротивление это двоякого рода.

  1. Внутреннее сопротивление работает против сил, разъединяющих заряды, оно имеет природу, «близкую» этим разъединяющим силам. По крайней мере, работает с ними в едином механизме. Например, кислота, отбирающая кислород у двуокиси свинца и замещающая его на ионы SO4-, определенно испытывает некоторое химическое сопротивление. И это как раз и проявляется как работа внутреннего сопротивления аккумулятора.
  2. Когда наружная (выходная) половина цепи не замкнута, появление все новых и новых электронов на одном из полюсов (и убывание их с другого полюса) вызывает усиление напряженности электростатического поля на полюсах аккумулятора и усиление отталкивания между электронами. Что позволяет системе «не идти вразнос» и остановиться на некотором состоянии насыщенности. Больше электронов из аккумулятора наружу не принимается. И это внешне выглядит как наличие постоянного электрического напряжения между клеммами аккумулятора, которое называется Uхх, напряжением холостого хода. И оно численно равно ЭДС — электродвижущей силе. Поэтому и единицей измерения ЭДС является вольт (в системе СИ).

Но если только подключить к аккумулятору нагрузку из проводников, имеющих отличное от нуля сопротивление, то немедленно потечет ток, сила которого определяется по закону Ома.  

Померить внутреннее сопротивление источника ЭДС, казалось бы, можно. Стоит включить в цепь амперметр и шунтировать (закоротить) внешнее сопротивление. Однако внутреннее сопротивление настолько низко, что аккумулятор начнет разряжаться катастрофически, вырабатывая огромное количество теплоты, как на внешних закороченных проводниках, так и во внутреннем пространстве источника.

Однако можно поступить иначе:

  1.  Измерить E (помним, напряжение холостого хода, единица измерения — вольт).
  2. Подключить в качестве нагрузки некоторый резистор и померить падение напряжения на нем. Вычислить ток I1.
  3. Вычислить значение внутреннего сопротивления источника ЭДС можно, воспользовавшись выражением для r  

Иллюстрация

Обычно способность аккумулятора выдавать электроэнергию оценивается его энергетической «емкостью» в амперчасах. Но интересно было бы посмотреть, какой максимальный ток он может вырабатывать.

Несмотря на то, что, быть может, электродвижущая сила источника тока заставит его взорваться. Так как идея устроить на нем короткое замыкание показалась не очень заманчивой, можно вычислить эту величину чисто теоретически. ЭДС равно Uхх.

Просто нужно дорисовать график зависимости падения напряжения на резисторе от тока (следовательно, и от сопротивления нагрузки) до точки, в которой сопротивление нагрузки будет равно нулю.

Это точка Iкз, пересечения красной линии с линией координаты I, в которой напряжение U стало нулевым, а все напряжение E источника будет падать на внутреннее сопротивление.

Часто кажущие простыми основные понятия не всегда бывает можно понять без привлечения примеров и аналогий. Что такое электродвижущая сила, и как она работает, можно представить, только рассмотрев множество ее проявлений.

А стоит рассмотреть определение ЭДС, как оно дается солидными источниками посредством умных академических слов — и все начинай с начала: электродвижущая сила источника тока.

Или просто выбей на стене золотыми буквами:

Надпись

Источник: https://domelectrik.ru/baza/teoriya/eds

Электродвижущая сила

В физике такое понятие, как электродвижущая сила (сокращенно – ЭДС) используется в качестве основной энергетической характеристики источников тока.

Электродвижущая сила ( ЭДС )

Электродвижущая сила (ЭДС) – способность источника энергии создавать и поддерживать на зажимах разность потенциалов.

ЭДС – измеряется в Вольтах

E = 1в

Напряжение на зажимах источника всегда меньше ЭДС на величину падения напряжения.

Электродвижущая сила

E = UR0 + URH

URH = E – UR0

URH – напряжение на зажимах источника. Измеряется при замкнутой внешней цепи.

Е–ЭДС – измеряется на заводе изготовителе.

Электродвижущая сила (ЭДС) представляет собой физическую величину, которая равна частному от деления той работы, которая при перемещении электрического заряда совершается сторонними силами в условиях замкнутой цепи, к самому этому заряду.

Следует заметить, что электродвижущая сила в источнике тока возникает и при отсутствии самого тока, то есть тогда, когда цепь является разомкнутой. Такую ситуацию принято именовать «холостым ходом», а сама величина ЭДС при ней равняется разнице тех потенциалов, которые имеются на зажимах источника тока.

Химическая электродвижущая сила

Химическая электродвижущая сила наличествует в аккумуляторах, гальванических батареях при протекании коррозионных процессов. В зависимости от того, на каком именно принципе построена работа того или иного источника питания, они именуются либо аккумуляторами, либо гальваническими элементами.

Одной из основных отличительных характеристик гальванических элементов является то, что эти источники тока являются, так сказать, одноразовыми.

При их функционировании те активные вещества, благодаря которым выделяется электрическая энергия, в результате протекания химических реакций распадаются практически полностью.

Именно поэтому если гальванический элемент разряжен полностью, то в качестве источника тока использовать его далее невозможно.

В отличие от гальванических элементов аккумуляторы предполагают многократное использование. Это возможно потому, что те химические реакции, которые в них протекают, имеют обратимый характер.

Электромагнитная электродвижущая сила

Электромагнитная ЭДС возникает при функционировании таких устройств, как динамо-машины, электродвигатели, дроссели, трансформаторы и т.п.

Суть ее состоит в следующем: при помещении проводников в магнитное поле и их перемещении в нем таким образом, чтобы происходило пересечение магнитных силовых линий, происходит наведение ЭДС. Если цепь замкнута, то в ней возникает электрический ток.

В физике описанное выше явление называется электромагнитной индукцией. Электродвижущую силу, которая при этом индуктируется, именуют ЭДС индукции.

Следует заметить, что наведение ЭДС индукции происходит не только в тех случаях, когда в магнитном поле проводник перемещается, но и тогда, когда он остается неподвижным, но при этом осуществляется изменение величины самого магнитного поля.

Фотоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда наличествует или внешний, или внутренний фотоэффект.

В физике под фотоэффектом (фотоэлектрическим эффектом) подразумевается та группа явлений, которая возникает тогда, когда на вещество воздействует свет, и при этом в нем происходит эмиссия электронов. Это называют внешним фотоэффектом. Если же при этом появляется электродвижущая сила или изменяется электропроводимость вещества, то говорят о внутреннем фотоэффекте.

Сейчас и внешний, и внутренний фотоэффекты очень широко используются для проектирования и производства огромного количества таких приемников светового излучения, которые преобразуют световые сигналы в электрические.

Важно

Все эти устройства называются фотоэлементами и используются как в технике, так и при проведении разнообразных научных исследований.

В частности, именно фотоэлементы используются для того, чтобы производить наиболее объективные оптические измерения.

Электростатическая движущая сила

Что касается этого типа электродвижущей силы, то она, к примеру, возникает при механическом трении, возникающем в электрофорных агрегатах (специальных лабораторных демонстрационных и вспомогательных приборах), она же имеет место быть и в грозовых облаках.

Генераторы Вимшурста (это еще одно название электрофорных машин) для своего функционирования используют такое явление, как электростатическая индукция. При их работе электрические заряды накапливаются на полюсах, в лейденских банках, причем разность потенциалов может достигать очень солидных величин (до нескольких сотен тысяч вольт).

Природа статического электричества заключается в том, что оно возникает тогда, когда из-за потери или приобретения электронов нарушается внутримолекулярное или внутриатомное равновесие.

Пьезоэлектрическая электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда происходит или сдавливание, или растяжение веществ, называемых пьезоэлектриками. Они широко используются в таких конструкциях, как пьезодатчики, кварцевых генераторах, гидрофонах и некоторых другиех.

Именно пьезоэлектрический эффект положен в основу работы пьезоэлектрических датчиков. Сами они относятся к датчикам так называемого генераторного типа. В них входной величиной является прилагаемая сила, а выходной – количество электричества.

Что касается таких устройств, как гидрофоны, то в основу их функционирования заложен принцип так называемого прямого пьезоэлектрического эффекта, который имеют пьезокерамические материалы. Суть его состоит в том, что если на поверхность этих материалов оказывается звуковое давление, то на их электродах возникает разность потенциалов. При этом она пропорциональна величине звукового давления.

Одной из основных сфер применения пьезоэлектрических материалов является производство кварцевых генераторов, имеющих в своей конструкции кварцевые резонаторы. Предназначены такие устройства для того, чтобы получать колебания строго фиксированной частоты, которые стабильны как по времени, так и при изменении температуры, а также имеют совсем невысокий уровень фазовых шумов.

Термоионная электродвижущая сила

Эта разновидность электродвижущей силы возникает тогда, когда с поверхности разогретых электродов происходит термоэмиссия заряженных частиц. Термоионная эмиссия на практике применяется достаточно широко, например, на ней основана работа практически всех радиоламп.

Термоэлектрическая электродвижущая сила

Эта разновидность ЭДС возникает тогда, когда на различных концах разнородных проводников или же просто на различных участках цепи температура распределяется очень неоднородно.

Термоэлектрическая электродвижущая сила используется в таких устройствах, как пирометры, термопары и холодильные машины.

Датчики, работа которых основана на этом явлении, называются термоэлектрическими, и являются, по сути дела, термопарами, состоящими из спаянных между собой электродов, изготовленных из разных металлов.

Когда эти элементы или нагреваются, или охлаждаются, между ними возникает ЭДС, которая по своей величине пропорциональна изменению температуры.

Источник: http://selectelement.ru/basic-concepts/electromotive-force.php

Электродвижущая сила – Класс!ная физика

«Физика – 10 класс»

Любой источник тока характеризуется электродвижущей силой, или сокращённо ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В.
Что это значит?

Если соединить проводником два разноимённо заряженных шарика, то заряды быстро нейтрализуют друг друга, потенциалы шариков станут одинаковыми, и электрическое поле исчезнет (рис. 15.9, а).

Сторонние силы.

Для того чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками.

Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков.

В таком устройстве на заряды, кроме электрических сил, должны действовать силы неэлектростатического происхождения (рис. 15.9, б). Одно лишь электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

Совет

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (т. е. кулоновских), называют сторонними силами.

Вывод о необходимости сторонних сил для поддержания постоянного тока в цепи станет ещё очевиднее, если обратиться к закону сохранения энергии.

Электростатическое поле потенциально. Работа этого поля при перемещении в нём заряженных частиц по замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии — проводник нагревается.

Следовательно, в цепи должен быть какой-то источник энергии, поставляющий её в цепь. В нём, помимо кулоновских сил, обязательно должны действовать сторонние, непотенциальные силы.

Работа этих сил вдоль замкнутого контура должна быть отлична от нуля.

Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энергию и отдают её затем проводникам электрической цепи.

Сторонние силы приводят в движение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальванических элементах, аккумуляторах и т. д.

При замыкании цепи создаётся электрическое поле во всех проводниках цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле (см. рис. 15.9, б).

Природа сторонних сил.

Природа сторонних сил может быть разнообразной. В генераторах электростанций сторонние силы — это силы, действующие со стороны магнитного поля на электроны в движущемся проводнике.

В гальваническом элементе, например в элементе Вольта, действуют химические силы.

Элемент Вольта состоит из цинкового и медного электродов, помещённых в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте.

В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной кислоте.

) Между цинковым и медным электродами появляется разность потенциалов, которая и обусловливает ток во внешней электрической цепи.

Электродвижущая сила.

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращённо ЭДС).

Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к абсолютной величине этого заряда:

Электродвижущую силу, как и напряжение, выражают в вольтах.

Разность потенциалов на клеммах батареи при разомкнутой цепи равна электродвижущей силе. ЭДС одного элемента батареи обычно 1—2 В.

Можно говорить также об электродвижущей силе и на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единичного заряда) не во всём контуре, а только на данном участке.

Электродвижущая сила гальванического элемента есть величина, численно равная работе сторонних сил при перемещении единичного положительного заряда внутри элемента от одного полюса к другому.

Обратите внимание

Работа сторонних сил не может быть выражена через разность потенциалов, так как сторонние силы непотенциальны и их работа зависит от формы траектории перемещения зарядов.

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Следующая страница «Закон Ома для полной цепи»
Назад в раздел «Физика – 10 класс, учебник Мякишев, Буховцев, Сотский»

Законы постоянного тока – Физика, учебник для 10 класса – Класс!ная физика

Электрический ток. Сила тока — Закон Ома для участка цепи. Сопротивление — Электрические цепи. Последовательное и параллельное соединения проводников — Примеры решения задач по теме «Закон Ома.

Последовательное и параллельное соединения проводников» — Работа и мощность постоянного тока — Электродвижущая сила — Закон Ома для полной цепи — Примеры решения задач по теме «Работа и мощность постоянного тока.

Закон Ома для полной цепи»

Источник: http://class-fizika.ru/10_a164.html

Электрический ток

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Важно

Сопротивление проводника зависит и от его температуры:

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением.

Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи.

Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат.

Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа.

Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Совет

2. Закономерности параллельного соединения:

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов.

Любой вольтметр обладает некоторым внутренним сопротивлением RB.

Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения.

Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной.

В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле.

Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника.

Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер).

Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга.

Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС.

При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению…

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Мощность потерь или мощность внутри источника тока:

Полная мощность, развиваемая источником тока:

КПД источника тока:

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы.

К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества.

Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях.

Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду).

Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Обратите внимание

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов.

 Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов – электроны и положительные ионы.

Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием – ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц.

Молекулы газа также ионизируются при высокой температуре.

Ионизация приводит к возникновению в газах свободных носителей зарядов – электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума.

Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации.

Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

Источник: https://educon.by/index.php/materials/phys/elektricheskij-tok

Электродвижущая сила (эдс) источника тока

N – число носителей тока в некотором объеме V проводника

(1/м3) концентрация носителей тока, V объем проводника

средняя скорость направленного движения носителей

(скорость дрейфа)

Подставив вышеприведенные формулы в первую из них, получим выражение, связывающее плотность тока с величиной заряда носителей тока (заряд электрона), их средней скорости направленного движения и концентрации.

Как создать ток в проводнике? Можно за счет трения зарядить, например, стеклянную палочку и дотронуться ею до какого-либо проводника. За счет действия электростатических сил заряды будут перемещаться внутри проводника, и по проводнику пройдет ток.

Если мы хотим, чтобы по проводнику шел ток длительное время, нам придется все время натирать палочку и дотрагиваться до проводника. Иначе говоря, чтобы поддерживать в проводнике ток, нужно некоторое устройство, которое поставляло бы к проводнику заряды за счет действия сил неэлектростатического происхождения.

Важно

Это устройство можно сравнить с насосом, который все время подает воду к трубе, и по трубе движется поток воды. Любые силы неэлектростатического происхождения, создающие в проводнике ток, называются сторонними силами.

Это могут быть механические силы (натирание вручную стеклянной палочки), химические силы в электрических батарейках, электромагнитные силы в генераторах [20]. Устройства, в которых возникают сторонние силы, называются источниками тока. Источники тока характеризуют величиной, называемой электродвижущей силой.

Электродвижущая сила (ЭДС) источника тока; это название устаревшее, по смыслу ЭДС – это не сила, а работа сторонних сил по переносу единичного положительного заряда

Внутри проводников заряды переносятся электростатическими силами при наличии разности потенциалов между точками проводника. Разность потенциалов – это работа электро-сатических сил по переносу единичного положительного заряда.

Если мы рассматриваем участок цепи, на котором проявляются и сторонние и электростатические силы, то используется понятие напряжение U – это работа по переносу единичного положительного заряда сторонними и электростатическими силами.

Закон Ома (в интегральной форме).[21]

j2 > j1

закон Ома для однородного участка цепи (без источника тока); смысл закона в том, что сила тока прямо пропорциональна разности потенциалов, приложенной к концам проводника

(·)

закон Ома для неоднородного участка цепи (с источником тока) (о выборе знаков см. дальше)

закон Ома для замкнутой цепи

Во внешней цепи традиционно считается, что ток идет от «+» батареи к «-»

В формулах:

R – суммарное сопротивление участка цепи, указанного символически

прямоугольником; оно может состоять из нескольких проводников,

соединенных и последовательно, и параллельно

— общая ЭДС источников тока — это может быть несколько батарей,

соединенных параллельно или последовательно;

r – общее внутреннее сопротивление источников тока

Напряжением U называется произведение силы тока на сопротивление участка. Из формулы (·) следует, что напряжение и разность потенциалов численно равны только для однородного участка цепи (= 0).

Перепишем (·), выразив разность потенциалов, т. к. вольтметр измеряет именно разность потенциалов, а не напряжение (они равны только для однородного участка):. Пусть требуется найти разность потенциалов Dj = j2j1.

Выбрать знаки можно с помощью такого ненаучного правила: «Идем» по цепи от j2 к j1, если ток – с нами – берем «+», если упираемся в «+» батареи, — берем «+».

Если при числовых расчетах получим, например, (-5 В) это означает, что j2 < j1.

Вывод закона Ома на основе электронной теории электропроводности металлов.

В электронной теории проводимости предполагается:

1) В металлах имеются свободные электроны, которые в отсутствие внешнего

электрического поля движутся хаотически, а при

наличии поля приобретают характер упорядоченного

движения (см. рис.).

2) Движение каждого электрона подчиняется законам

классической механики.

3) Все вместе электроны образуют электронный газ и подчиняются законам

молекулярной физики.

4) Взаимодействие электронов с ионами решетки рассматривается как простое

столкновение, взаимодействием электронов между собой пренебрегается.

5) Напряженность поля внутри металла считается постоянной.

6) Все электроны под действием внешнего электрического поля приобретают

одинаковые скорости vср.

При выводе закона Ома будем считать, что электрон, сталкиваясь с ионом, полностью отдает ему свою энергию, а затем снова набирает скорость под действием сил поля (см. рис.- фрагмент кристаллической решетки).

Электрон в кристалле участвует одновременно в двух движениях: хаотическом тепловом со скоростью u @ 105 м/с и направленном под действием поля со скоростью vср порядка 0,001 м/с, т. е.

u >> vср

Источник: http://fiziku5.ru/uchebnye-materialy-po-fizike/elektrodvizhushhaya-sila-eds-istochnika-toka

Ссылка на основную публикацию